Codes and Projective Multisets

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codes and Projective Multisets

The paper gives a matrix-free presentation of the correspondence between full-length linear codes and projective multisets. It generalizes the BrouwerVan Eupen construction that transforms projective codes into two-weight codes. Short proofs of known theorems are obtained. A new notion of self-duality in coding theory is explored. 94B05, 94B27, 51E22.

متن کامل

Duality and Greedy Weights of Linear Codes and Projective Multisets

A projective multiset is a collection of projective points, which are not necessarily distinct. A linear code can be represented as a projective multiset, by taking the columns of a generator matrix as projective points. Projective multisets have proved very powerful in the study of generalised Hamming weights. In this paper we study relations between a code and its dual.

متن کامل

A Lower Bound on the Greedy Weights of Product Codes and Projective Multisets

We present the relation between product codes and projective multisets, and give a lower bound on the greedy weights of product codes. I. GREEDY WEIGHTS The weight hierarchy has received a lot of attention after Victor Wei's paper [5]. Let C be an [n, k ] linear code. The support of a codeword c E C is the set ~ ( c ) of non-zero coordinate positions. For a subcode D C we write x ( D ) = U c E ...

متن کامل

Intersection sets, three-character multisets and associated codes

In this article we construct new minimal intersection sets in AG(r, q2) sporting three intersection numbers with hyperplanes; we then use these sets to obtain linear error correcting codes with few weights, whose weight enumerator we also determine. Furthermore, we provide a new family of three-character multisets in PG(r, q2) with r even and we also compute their weight distribution.

متن کامل

Projective Reed - Muller Codes

R~sum~. On inlroduit une classe de codes lintaires de la famille des codes de Reed-Muller, les codes de Reed-Muller projectifs. Ces codes sont des extensions des codes de Reed-Muller gtntralists ; les codes de Reed-Muller projectifs d'ordre I atteignent la borne de Plotkin. On donne les traram&res des codes de Reed-Muller projecfifs d'ordre 2. 1.Introduction We note pm(Fq) the projective space ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 1998

ISSN: 1077-8926

DOI: 10.37236/1375